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ABSTRACT

Assuming that the present meteoritic infall as measured
on the earth has persisted for the age of the lunar maria, it is
possible to calculate the number density of small craters on the
lunar surface. Use of estimated errors generates three number
diameter relations of confidence levels crudely estimated as 10,
50, and 90%. The nominal (50%) density of cratersexceedlng
1 meter in dlameter is ,06 per square meter; the other relatlons
are about 20 times higher and lower,

Under the hypothesis that erosion by micrometeorolds
results in a protectlve debris layer, calculations indicate that
this layer is expected (50%) to be less than 0.1 meter thick,
with a 6x span to the 10% and 90% levels., Any primordial lunar
relief would be eroded by a smaller amount, The debris layer
will be much more substantial near larger craters.

Finally, arguments assuming a fairly general comminution
law suggest that the number density of large ejected fragments
on the surface should be similar to that of craters of equal
volume,

Since other processes than meteoritic infall are probably
important in determining lunar topography, one must be cautious
in asserting that these results in fact describe the moon.




INTRODUCTION: SURFACE MODELS

The question-of the nature of the lunar surface
arises in almost every study related to the Apollo lunar
landing mission. These studies include not. only the
landing of the space ship itself, but also, the design
of surface vehicles, the plans. for manned exploration,
and the design of photographic reconnaissance equipméent.
Regretfully, however, years of. intensive study have if
anything obscured our concept of the lunar surface. Until
some direct information is obtained, these essential
studies have. no alternative but a group.of plausible sur=
face models, of varying inhospitality. . _

A proposed landing vehicle, for. instance, can. be
judged on the number of such models with which 1t can deal;
only when more 1is known can 1t be designed. for excellence
in coping with a particular model. An effort to produce
a group of statistical lunar surface models is in process.
The present paper, dealing with the effects. of meteoric
bombardment, 1s a portion of that effort.

The gross appearance of the moon 1s dominated by
craters generally believed to be of meteoritic origin. The
crater density 1is unknown for diameters under half a kilo-
meter or so, but there 1s considerable information on the
terrestrial infall of meteorites. which would produce craters
on the scale of 0.1 to 100 meters in diameter. -This in-

formation 1s reviewed below, and. a best estimate of the

crater population is made., We further attempt to estimate
the nupmbers of crater fragments of various sizes, and the
extent to which these features have been modified by meteoric
erosion.  Some of the data is very poor. .Recognizing this,
we attempt to estimate errors.. At each step in the argument
where a numerical value must be postulated,. a logarithmic
probable error is assigned. It 1s intended that the

true values have a chance exceeding 80% of falling within
the error interval. The errors are assumed independent,

and are propagated through the cemputations.accordingly,

the fractional error in a product being the Pythagorean

sum of the errors in each factor. Thus, if ex is the error
in x, and similarly for y and z, the error in the product
Xyz 1s:

- 2 2 2
eXyz —‘V/ex + ey + e, (1.1)
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Thus, the finished calculation contains an optimistic, a
nominal, and a pessimistic case. These should be consid-
ered upper bounds on the results, with confidences of

10%, 50%, and 90%, respectively. These levels are subject
to revision, and are stated only to set orders of magnitude.
The set can readily be used in a sequence of surface models,
The chances that the proposed models statistically deseribe
the "real moon" are problematic; certainly they are good
only if meteoric infall is the major influence on small
scale topography. Other processes, including vulcanism,

may produce a rougher terraln, or a smoother one. A quan-
titative model, however, must be held in considerable
respect, particularly since, as will be seen, the inferred

surface is more irregular than has been proposed in the past,

CRATER COUNTS AND METEQRIC INFALL

CRATERS

To the naked eye observer, the moon 1s divided
into bright (continental) and dark (mare) areas, With
even a small telescope, the craters become apparent.
Substantial numbers appear on the maria, and the contin-
ents are literally covered with these mammoth, circular
features.

The general nature of the craters has been
discussed in a number of books. 1 They are generally
round, Large craters are shallow; their floors seem to
follow the mean surface of the moon. Smaller craters may
be quite deep. As examples, Copernicus has a ratio of rim
diameter to total depth of 90 km/3.5 km = 26¢1, Lalande
A (10°W, 7°S) is 12 km/2.,5 km = 5:1, Th?s§ figures are
taken from the Air Force Lunar Charts. The diameter-
depth ratio for fresh, small crater? Tay be 4:1, This
figure is suggested by H. J. Moore of the U, S. Geo~-
logical Survey.

The Survey's Astrogeologic section (4) and others
have shown that craters may be classified by relative age.
At least five age classes can be distinguished; the walls
of the old craters are degraded, and pitted by younger
craters, The youngest craters of all are characterized by
sharp contours, rubbly surrounding material, and by bright,
more or less radial "rays" which may (particularly for the
crater Tycho) span the entire visible surface of the moon.

To order the craters by age 1s not to assign
calendar ages. In the point of view taken in this paper,
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the craters are a result of the moon's collisions with other,
smaller celestlal bodies. The continental reglons may repre-
sent the concluding stages of the consolidation of the solar
system, Subsequent to this, the great maria were formed.
Several of these are quite circular, including Mare Imbrium,
500 km across. These also may have resulted from impacts,
and if so, exceedingly spectacular ones., - The maria now
appear smooth and reasonably flat. As for the surface mate-
rial, its nature is unknown, '

In any case, the maria are "new" relative to the

continents. The age we use below is 109i0.7 years = not
younger than 200 million years, and no older than the pro-
posed 4.5 billion year age of the earth and the solar system,
On the maria, the crater density is fifteen-thirty times
smaller than on the continents., (8) We hypothesize that

at least the marial craters have accumulated uniformly over
the years since mare formation.

Today, the collision or impact hypothesis for
the origin of the craters is widely held. Baldwin (5) has
been a forceful exponent for many years. Divergent hypo-
theses generally posit a volcanic origin for some or all
of.the features. This idea i1s particularly compelling for
non=-random arrays of small craters, or for craters associ=-
ated with linear features or domes.

The majority of the craters seem, however, to
be randomly placed. An impact origin for these 1is further
supported by the reasonable matching of the density of
small craters with the known, current, infall rate of
substantial meteoroids §nd with the number of comparable
features on the eart‘,h.(6

Let us now briefly review some of the published
"erater counts" of number versus diameter. We restrict
ourselves to mare regions., The iInvestigators start with

a high resolution photograph (6-Shoemaker, Hackmann &
Eggleston, T7-Opik) or the Air Force Charts (8=McGillam &

Miller) and tabulate the observed features. The Geological
Survey paper ( has a good discussion of features which
should be excluded, These include craters which are prob-
ably volcanic, and "gouge-like depressions," "probably
secondary impact craters formed by fragments ejected from
the large craters."

On Figure 1, the data from the three investigatilons
is plotted. These have been expressed as the cumulative
number of craters exceeding diameter D (in meters) per
square meter. Otherwise, ev?ry quoted numb?§ is included.

It will be seen that Opik (7) and McGillam ) counts are
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consistent (within a factor of §wo total range) and that

the Geological Survey count, 6) with its dellberate omissions,
is low. The deviation may be statistical at the large diameter
end, but in the mean, amounts to about three times,

We have chosen the stralight line on Figure 1 as a
suitable representation of the data, Within a factor of
two, it includes most of the points., If F is the number

density (m=2) and D the crater diameter (m), the equation of
this line is:

log F = - 4,28 -1.58 log D * 0.3 (2.1)
3<log D<5

' In this paper, "log" will indicate the common
logarithm, and "1n" the natural logarithm.

Exponents from 1°5.to 1.7 would fit, and the
general applicability can be judged by the points on
Figure 1,

Are these crater densities consistent with the
meteorlc infall hynothesls? It will be seen that they
are, in that they are consistent with the terrestrial
infall rates observed today. The hypothesis can then
be advanced that these same infall rates should be used

. to compute the number densities of smaller lunar craters,

to extend Figure 1 down to the 1 meter size range,
METEORIC INFALL: THE METEOROIDS

In an earlier paper, the author ha? ?escribed
the Meteorold Environment of Project Apollo, 9) and

some of the background material there may be of use.

In fact, however, the present investigation is comple=-
mentary. The small particles just capable of penetrating
spacecraft skins would make negligible craters on the
moon. The narticles which leave substantial craters

(10 centimeters or more in diameter) are too rare to
affect Apollo spacecraft design or mission strateégy.

The meteoroids which concern us are largely
the museum meteorites, dense bodies of composition and
structure suggesting that they once formed part of a sub-
stantial planetoid, Perhaps 10% of the commonly found
meteorites are nickel-iron. The rest, the s?on?s, have a
wide variety of compositions. G. S. Hawkins(10) states that
the heaviest meteoroids (above 106 kg) are predominantly irons.

These bodies move in the solar system pre-
dominantly in direct orbits (i.,e. in the same sense as
the earth) of varying eccentricity and their impact



velocitles vary accordingly. Hawkins (10) gives 17 km/sec
as a mean veloclty for impact with the earth. Compensating
for the respective escape velocities, this should amount

to about 13 km/sec for impacts on the moon. This mean
velocity is rather smaller than that observed for the more

common meteoroids, which have a higher percentage of retro-
grade orbits.

HYPERVELOCITY IMPACTS

Wwhen a meteoroid collides with a solid surface,
the result 1s analogous to an explosion. The impact velo=
city is substantially above the sound velocity in the
target. Essentlally the entire kinetic energy of the
meteoroid is imparted to the target in a localized, highly
shocked region; crater formation occurs subsequently, with
the dissipation of this energy.

Stu?ies of cratering are regorted, for instance,
by Baldwin (5) and Shoemaker et at. (®) More general studies
of hypervelocity impact are contain?d %n the proceedings of
the Hypervelocity Impact Symposia. 11

There 1is considerable disagreement among the ex-
perts (see (9), (24), and other review papers). Some groups
associate crater vo%gme with the kinetic energy of the
projectile; others ) choose, for larger craters, perhaps
the .88 power of kinetic energy. Still others incline go a
dependence of crater volume on projectile momentum. 12
Experimental impact experiments do not cover velocities much
in excess of 10 km/sec, so that, particularly for cometary
meteoroids, substantial extrapolation error is introduced.
Since the mean impact velocity of heavy meteoroids on the
moon is only 13 km/sec, the question of velocitz dependence
is less important for the present study.

On the other hand, the question of material
strength is important. Unfortunately we have no knowledge
of the strength of lunar surface material. Briefly, the
early stages of impact are characterized by pressures cf
millions of atmospheres. The strength and shape of projec-
tile and target are not important. During the "explosive"
or terminal stages of cratering, however, the strength of
the target almost certainly determines the ultimate crater
size and shape. Unfortunately, we cannot estimate the
strength of the lunar surface. This uncertainty controls
the usefulness of our cratering criterion, and makes the
preclise choice immaterial.



In other studies(9), we have used the Charters and
Locke (13) penetration relation, which is expressed as,

p v 2/3
%= 2,28 ( -Q-E—E ) (2.2)

Here p 1s the penetration in a semi-infinite solid
of density Dt ana sound velocity c¢, resulting from the impact

of a particle of diameter d, density op, and velocity v. Scaling

material properties with sound velocity is frankly successful
only for a few metals; it is adequate for order-of-magnitude
studies. Other criteria (see reference 9) often.introduce the
"ocrushing strength", S of the target. One may substitute

¢l = S/ot with alterations of the constant. CraQering relations

used by Shoemaker(s) and Baldwin(S) predict craters in solls
larger by perhaps 10x in volume. Relation (2.2) is as adequate
as any to start from,

We would prefer a relation between crater diameter,
D, in meters, and particle mass, m, in kilograms.

We assume that the Charters and Locke relationship
adequately predicts the volume ejected from a crater, and

that this volume is % L pg. Then,

3 _ °p
(2p) 181( e ) —7 (2.3)

clearly dependent on particle kinetic energy. A private
communication from H. J. Moore of the U, S, Geological Survey
suggests that real impact craters are probably less than
‘hemispherical, with diameter to depth ratios of about U:l.
Thus, the diameter of the crater will be rather larger than

2 p. Define R, the ratioc of the volume of a hemisphere to

that of the shallower crater of equal diameter. Equation
(2.3) then becomes

D3 = 181

= . (2.4)

Pt c

_".E)R

t

For the lunar surface, we choose Py = 3.5 x 103 kg/m3,

and C = 5 x 103 m/second. The first is the approximate bulk
density of the moon; the latter a typical value for strong solids.
These values probably overestimate-the strength of the moon; they
are certainly only applicable to impacts on the lunar "bedrock".
Impacts on a porous surface layer-will be treated later., With
these values, it appears that a one kilogram object of density
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equal to that of the moon, striking at 20 kllometers per second,
would make??emispherical crater of dlameter one meter. This is
shown 1in,

2
D3 = 2 R m (-——x——a (2.5)
Pt 2 x 10

For a spherical cap of U4:1 diameter/depth ratio,
R ~2.5., Equation (2.5) will be used below to estimate the cra-
ter dlameters resulting from given %mg cts. The expected error
is substantial; at 15 km/sec, Bjork{le) would pre?égt 3x smaller
values for metallic impacts; as stated, Shoemaker might pre-
dict 10x larger values.

We assign a_logarithmic probable error of t 0.8, or
about six times, in D-.

D. METEORIC INFALL: FLUXES

The meteoric data falls in three groups: first the
cometary meteors, which are important in the smaller size ranges;
second, the bright visual meteors, or fireballs; and third, the
meteorites, the heaviest of these objects, which survive passage
through the earth's atmosphere and are found on the ground.

Cometary Flux. These particles form the majority of
the "visual meteors." They are frequent enough to be effec-
tively counted by patrol cameras. ?hi classical report in this
field is that of Hawkins and Upton. 1%)  Twin cameras with inter-
rupting shutters are placed on a 40 km baseline., Altitude,
velocity, and meteor brightness can be measured., As discussed
through?gg the literature [seg (9), but for original work
E. Opik(15) and B, I. Levin(16)] the instantaneous brightness can
be tied quantitatively with the lnstantaneous ablative mass loss
of the meteoroid. The integrated light curve is then a measure
of mass. Relative masses are considered quite reliable; the ab-
solute values are in consilderable doubt. Hawkins and Upton stated
the results of thelr survey as:

log N = =1.34 log m - 2,64 (2.6)

N is the cumulative influx of meteors exceeding a mass m (grams)
per square km, per hour. The zero magnitude meteor was taken

as 30 grams in weight, entering t?e earth's atmosphere at 30
km/sec. Currently, F. L. Whipple 17) regards 1 gram as a prefer-
able value; Hawkins inclines to nearer 4 grams; with an u cgy—
tainty of 5x. The extreme values - 30gm, or .05gm (Levin 16))-
result from specific traceable assumptions. A range of about

0.2 = 5 grams is unresolved.

. . . Our model for the cometary influx on the moon is as
follows: We assign a lgm zero magnitude mass in equation (2.6)
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and express it in m.kes units, obtaining*

log N = < 1.34 logm - 18,20 m-2sec-1,kg (2.7)

The uncertainty 1is taken as Hawkins 5x in mass,
Logarithmically, this will appear in (2.7) to be
+ 1,34 + 0.7 = + 0,94, The mean velocity impacting the
moon, with its lower gravitational potential, is 28 km/sec
rather than 30, but it seems unnecessary to make this
change,

?he density of the cometary meteorolds is small;
Whipple(17) chooses 0.44 gm/cc. For simplicity, we prefer
0.5 gm/cc., We make no allowance for the fact that the moon,
as a smaller body, will capture somewhat fewer meteoroids
per unit area than the earth,

Fireballs. Fireballs are the brighter visible
meteors. Obgervational data was summarized by Hawkins in
reference (18), This article has been superseded by more
recent ones (10,19) in which he considers, as well, cata-
logs of meteorites. He seems to extrapolate witﬁ consi-
derable enthusiasm, and his mass range (1 to 1019 xg) is
probably broader than is justified. In any case, he
quotes:

The flux of stony meteorites (density- 3.5):
log N = = 3.73 - logm (2.8)

The flux is per km2 year, the mass in kilograms. This 1s
derived from the catalogs of recovered meteorites assuming
that 90 % of a stone is ablated in the earth's atmosphere.
This 90% figure seems excessive for very large meteoroids,
Levin ((16), p. 145) states that for slow, large meteoroilds,
as much as 90% of the mass may survive! We feel that Hawkins'
masses are overestimated for large vparticles, and reduce the
mass flux by 3x. We will then allow a mass uncertainty of

3x, bracketing ablations of 0 to 90%. The equation becomes
(since log 1 km2 year = log m2sec + 13,50):

log N = -« 17073 - 108 m (209)

2

in m-sec, kg.

The uncertainty here is, then, x in mass (dependent
on ablation) and probably U4x in flux as will be discussed

¥This is the mass flux of the O.M,S.F. Program Directive,

Natural Environment and Physical Standards for Apollo,
M-DE 20.008A August 15, 1963 cont) .




below. In accordance with (1.1), the expected logarithmic
error 1s /.36 + .23 = 0.77.

For iron meteoroids, Hawkins quotes

log N = - 5,61 - 0.7 logm ' (2.10)
(kmlyr, kg)

The iron meteoroids are less populous than the stones in

the kg range, but because of the smaller coefficient,

(0.7), dominate the largest size ranges. He assumes 80%

of an iron is ablated (the mass in space exceeds the observed

mass by 5x). As before, we reduce this to(logarithmically)

0.35 + 0.35.

log N = = 19.36 = 0.7 log m + 0.65 (2.11)
(m2sec, kg)

The density of iron is taken 8 gm/cc; the modal
impact velocity for irons and stones on the moon, as 13 km/sec.
The error is taken as 4x in flux and{5 in mass. The uncer=-
tainty in equation 2.11 is *+ 0.65.

Meteorites. The Uncertainty in Flux. The articles
by Harrison Brown(20) and an associate, Hugh MJllard(21),
are invaluable as studies in the certainties or uncertainties
of meteorite data. To reflect accurate flux data, only wit-
nessed "falls" are counted. For any degree of accuracy, only
regions of very dense population are usable. The "collection
efficiency" for falls varies with time of day and with the
season. The Millard study, which includes a quantitative
model of the collection process, concludes that the observed
number of falls is 15 times low.

These papers are very competent and well documented.
Brown's count (with no allowance for ablation) is, approxi-
mately,

log N= = 18.8 - 0.76 log m (2.12)
(mzsec, kg)

Brown does not recognize any difference of slope
between stones and irons., Even with allowance for ablation,
this 1is 4x lower than Hawkins estimate at the 1 kg level,
and 15x lower than Millard would prefer. With this informa-
tion we assign 4x (i.e., aboutVl5) as the uncertainty in .
the flux of meteorites.

The flux mass relations described above are plotted
on Figure 2. They show a gradual decrease in slope as mass
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increases. A steep slope corresponds to a population which
has been repeatedly fragmented - or perhaps which is very
fragile. A shallow slope corresponds to "under=grinding"

or, for very large masses, to accretional processes. Accord-
ing to Hawkins, the shallow slope for "irons" is due to

thelr strength, and thus their resistance to "grinding".

We shall now apply the chosen cratering law to these flux
relations, and estimate crater densities.

INFALL AND CRATER DIAMETERS

The meteoric infall described above certainly makes
craters today. The crucial assumptions we now make are:
(a) that the influx has persisted unchanged since mare forma-
tion 08'$he moon, and (b) that this time is
109 2 0.7 yn (1015-5 + 0.7 seconds).

On the first point, it is necessary to assume a
steady state, with meteoroids being supplied from a reser-
voir and depleted. There is reasonable support for this,
Whipple (22 quotes lifetimes foy cometary meteorolds as
short as 104 years, Hawkins(19 calculates that the total
asteroidal (stone and iron meteorite) infall on the earth
i1s a negligible drain on the asteroid belt. If the flux
is not reasonably constant, it has most probably been de-
creasing; the resulting estimates of crater density will
be small.

The estimate of the age of the maria (200 million
years to five billion years) brackets various proposed
values. The lower figure arises from assuming a constant
meteoroid infall rate and, judging by relative populations,
estimating the maria as younger than the continents in the
same proportion. The continents are assigned an age of
4,5 billion years, and the 200 million year figure results.
The cratering relation (2.5) 1is now applied to
the garious fluxes. Crater cumulative number density,
F(m~<) is obtained from the fluxes using:

log F = log N(D) + 16.5 + 0.7 (2.13)

For neatness, this work is summarized in Table I, The
results are shown on Figure 3, together with the crater
counts, The matching of the nominal values is gratifying,
but it 1is only significant within the proposed error ranges.

. The agreement is entlirely adequate to encourage the
use of the infall rates to estimate small crater populations.
Over the range of around 0.1 to 10 meter in crater diameter,
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TABLE I

CRATER NUMBER DENSITY RELATIONS

Assumption:

0 : _
3 log D = log (-§B§—) + log m + 2 log 9——1——E
¢ 2 x 10

+ log R + 0.8 from (2,5)
Crater Number Density: log F = log N + 16,5 + 0.7 (2.13)

R = 2,5 (4:1 craters)

Cometary Infall: (v=3%x lOLl m/sec, oy = 0.5 gm/cc)
log N = - 1,34 log m - 18,20 + 0.94 (2.7)
4,02 log D = 1.34 log m =-,13 + 1,07 from (2.5) (2.14)
log F = - 4,02 log D= 1.83 + 1,59 (2.15)

Stone Infall: (v = 1.3 x 10u m/sec, Py = 3,5 gm/ce)

log N = = 16g m = 17.73 + 0.77 (2.9)
3 logD=0+ logm+ ,02 + 0.8 (2.16)
log F==3log D~ 1.21 + 1,31 (2.17)

Iron Infall: (v = 1.3 x 10" m/sec, op = 8 gm/ce)

log N = = 19.36 - 0.7 log m + 0.65 (2.11)
2.1 log D = 0,7 log m + .268 *+ 0,56 (2.18)
log F = = 2,1 log D - 2,59 + 1,18 (2.19)




TABLE I (continued)

For stone andliron,

Empirical.Range: l - 10" kg, or 1 <log D<1.33

1014 kg) or log D<4.,7

Est. Range (Hawkins 1 =
Crater Density: -
log F - 4,28 - 1,58 log D + 0.3 (2.1)

3<<log D<5
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.it is the "Hawkins stone" population which dominates, with

a slope of -3 and a density of one crater exceeding 1 meter
diameter every 16 square meters, with a 20x uncertainty. We

‘have indeed generated three dissimilar models. The optimistic

case, (one crater every 240 sq m) 1s none too smooth. The
pessimistic case would appear nearly as rough to the astronaut
as the continental regions do in a small telescope.

This estimate of small crater density is high, com-

‘,pared.with several others we have seen. For example,

using the observed lunar crater population (2.1), one can
extrapolate to the 1 m level, obtaining one crater one meter
or greater every 30,000 m2, This ignores the known meteoric
infall; if there is firm information available, it is in the
slopes of the distribution on Figure 3. The infall steepens
as one goes to small masses, and the crater density - if it
was formed by infall - must do likewise for small craters.
The magnitudes are in doubt, but the upward trend 1s certain,

Other questions which arise lmmedlately are: Doesnot
the erosive action of the meteoroids greatly reduce.this re-
lief? What 1is the distribution of the debris ejected from
the craters? What is the significance of these estimates for
spacecraft operations? These questions will be dealt with -
insofar as practical - in the next three chapters.

METEORITIC EROSION - DUST LAYERS

Webster's Third International Dictionary describes
"erosion" (meaning #2) as "the general process whereby the
materials of the earth's surface are worn away and removed by
natural agencies including weathering, solution, corrasion and
transportation." In this sense, every crater-forming impact
is erosive, including Copernicus and Kepler. More specifically,
however, we want to deal with a general, omnipresent erosion
to which every area of the moon 1s subject. We shall define,
rather loosely, a "coverage" by craters in a small size
range such that fluxes exceeding the "coverage" value can be
called erosive. We then investigate the amount of material
worn away, removed, an trﬁsmsported° Estimated rates of meteor-
itic erosion in space 9.2 are not great, on the order of
10 angstrom units per year. On the lunar surface, the rates
are further reduced by the accumulation of a protective layer
of debris.(25) That is to say, a uniform "coverage" of an
initial rock surface by micro-craters of some size will result
in a layer of ejected fragments, probably in a loose and porous
form; this layer will impede further attack of the underlying
surface. The total thickness of the layer will be augmented
by ejection from much larger craters and by some fraction of
the infalling primary mass. We now continue with the detailed
arguments. ' _




- 14 -

FLUX RELATIONS: COVERAGE

The flux of meteoroids has been described above
by relations of the form

log N = log N, - s log D (3.1)
where N is the flux of particles per unit area forming

craters exceeding diameter D, and No and s are constants,
This is of course equivalent to the exponential form,

N =N D7? (3.2)

The flux can also be expressed as a differential quantity
n(D), such that:

N =f n(D) dD. (3.3)
D

In the case of the special form, (3.2),

+s N D91 = 4n(D) (3.4)

To gain some insight into the nature of erosion,
we define the "coverage" of a flux in some time t, as
follows, It is the total crater area generated by the in-
flux in that time, per unit area. Coverage is dimensionless.
Since no allowance is made for overlap, "coverage" 1is an
upper bound on the fraction of the surface actually occupiled
by craters; 1t is greater than one if the surface is "covered"
several times, If craters of sizes between Dl and D2 are in
question, the coverage C(Dl’Dz) is
By
¢(p,,D,) =t n (D) X 0% dp (3.5)
1272 T ’
1

It is convenient to look at a geometrical range,
i;e.y, D, = K D,. If the flux 1s exponential,

2 1
C(D, KD) = ==  tN_D™S*2(x75%2 1), s#0
or £ tN_ 1n K, s = 2 (3.6)

Equation (3.6) has some simple and interesting pro-
perties. For some reasonable K, say 2, the coverage 1is



B.

approximately the total infall times crater area; that is,
from. (3.6),

2

tN +  D? = C(D,2D) =st2

~-S+2

sE2,
-1)

r ,
= C(DszD)iﬁTﬁ§f s =2, (3.7)

The coefficient 1in brackets is always between
0.6 and 1.0, for S>1., This gives a satisfactory definition
for a "severely erosive" infall; if the number density, F,
of craters (as on figure 3) exceeds the value, F_,

F_(D) = Nt = D72, . (3.8)

it is more than 60% probable (Poisson statistics) that any
point on the surface lies in a crater of diameter between
D and 2D.

The crater densities of figure 3 are compared
with this criterion on figure 4. The nominal case'is
"severely erosive" for D <10cm, the pessimistic case, for
D <1 meter., The infall then drops, reaching minimum
"coverage" near the kilometer level, that is to say, at the
precise resolution wherein we judge tha? ghe Junar maria
are "very smooth", McGillam and Miller 8 quote a continental
crater distribution similar to the mare one, but 21 times
higher. This population is again becoming "erosive", on the
scale of 100's of kilometers; comparison with a lunar photo=-
graph shows that our "severely erosive" criterion is con-
servative.

. We conclude that we must consider the cometary in-
flux as the principal eroding agent; the stone influx is also
"erosive", but it i1s dominated by the cometary contribution,

Volume Removed

A quantitative estimate-of erosion requlres calcula-
tion of the volume of material "worn away, removed, and transe
ported," As defined above, the volume of a crater of diameter
D is ‘

I 3. ‘

R = one for hemispherical craters, 2.5 for the preferred
4:1 diameter: depth ratio craters, and attains larger values
for very large craters,
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The gross volume stirred and transported by an influx
in time t for a diameter i &erval (Dq,D, ) is: .

= 1 3 4
V(Dl’DZ) = t f n (D) TE-_R- D dpD., (3.10)
' D

1

For an exponential influx, this is
D

2
V(Dl,D2) =t No :S—i—'§ ﬁﬁ_ﬁ D-S+3 s#3 (3.1ll1la)

1

The volume removed is dominated by the upper limit
for s<3, and by the lower limit for s>3., For s = 3, (3.11)
is
D

V(Dy,D,) = t N g 1n}5§- s =3 (3.11b)

Similar relations may be derived which describe
mass infall on the moon, The study by McCracken and Dubin 25)
gives an excellent discussion of the magnitude of the meteoroid
flux below the mass limits covered in this paper, and con-
cludes that in 4.5 billion years a total infall of one am/cm2
has occurred for particles of mass between 10" and 10-1 grams.
(10 and 10-17 kg).

Using the cometary flux model (eqn, 2.7) for the
whole range, we would overestimate the infall by some orders
of magnitude; even with this handicap, our estimate of the
net volume of "transported dust" 1s small. This is so, be-
cause most of the dust 1s transported time and time again.

Consider the differential form of the crater volume
opened up by the influx in small ranges of time and dlameter,

av = n (D) D3 ap dt (3.12)

| -
12 R

Suppose there is a debris layer of depth, L.Craters
of diameter D much smaller than L will only "transport" debris,
and not deepen the layer. On the other hand, if D=> L, since
dV is the average volume generated per square meter, the mean
increase in L is

d L =PAV in md/m’* (3.13)
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The packing number, P, is the ratlio of bulk lunar density
to layer density. We can take the dliameter dependence
simply into account by introducing an exponential factor,

e'kL/D into (3.12).

aL = Tg—%— n (D) D'3 e

The constant, k, is related to layer strength. The rate
of growth of L is then

-kKL/D 4p at (3.14)

dL I -
at- - 15 nR(D) p3 7KL/ gp (3.15)
Erosive
Flux -

The integral is taken only over the erosive flux
because, although volume contributed by the larger craters
is very large, the debris is in fact localized near the
craters, and does not "cover" the surface.

For an exponential influx, and constant R, (3.15)
becomes (we take the entire range of D as "erosive"):

N_P c
A Sl s.[ p=s+2 =KL/D 4p (3.16)
o}

The integral is easy fOf 2 = 4; for s> 3 it can
be expressed as a gamma function. 20) Let 7 = E% 5

-s+2 -s+2 s-2; dD = =(kL) 772 4z, The integral be-

D = (kL) yA
comes

(kL)'s+3jf 25 e=% az = (x0)"%*3 r(s-3). (3.17)
(o] .

Here T'(x) is the gamma function. For positive
integers M, T'(M+1l) = M!, T(1) = 1, T(x) becomes infinite as
x approaches zero (in our case, as S decreases towards 3).

Equation (3.16) becomes -S43
_ ; TN, s r(s=3) Pk

$=3 41 = - '
L dL = —gz=m — dt (3.18)
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which has the solution

_, (s=2) s m N_ r(s-3) pk~3*3
15=2 - o £ (3.19)

The "erosive flux" was identified above as the
cometary influx, with's = 4,02, The debris layer in this
case accumulates nearly as the square root of time. The net
accumulation is given by evaluating (3.19) for the age of
the maria. The total number densitv for the cometarv
infall was glven in equation (£.45). an cxpoucnliul [Ciia,

‘this 1s:

F =Nt =Nt D=5 = 1,5 x 10~2 p=H4.02 (3.20)

Thus, Not = 0,015, The estimated error was about

. 40x. From a table of the gamma function(27), r(1.02) = ,98884,
We assume 4:1 diameter/depth craters, and take R = 2,5,

Since the upper surface of the layer 1s continually bombarded,

the majority of the layer should approach close packing, We

choose P = 2, accordingly. As discussed below, two is also

a reasonable value for k., Equation (3.19) becomes

L = .11 meters (3.21)

with an uncertainty of 6.x, since L depends only on the
1/2.01 power of N t, errors of the order of 2 or 3x in P

and k are swamped by the error in number density.

How good is this estimate? Two questions arise:
First, what 1s the physical meaning of the estimate 1tself,
and second, what other processes contribute to the dust
layer?

. Firstly, what 1is the nature of thils model layer?
Consider the intial differential equation (3, 14% If L is
zero, the influx removes and transports “§“ﬁ“ D3 cubic meters

‘of material; for a 4:1 crater, the crater depth 1s only
D/4, The exponential convergence factor (with k = 2) then
- states that for L = D/2, a dust layer 2x the depth of the
bare-rock crater, 37% of this volume is still removed from
base rock, At 5x the depth, 8% is removed. This implies
that the crater in the dust layer is 102 times the volume
of the initial crater,

"J
The model "dust layer", then, is pretty fragile; on
the assumption that 1t 1s largely close packed (50% porosity),
it still comes out 10cm thick at about the 50% confidence level,

. Additionally, there 1s the question of the prim?ry
meteorold infall. As discussed by MecCracken & Dubin(25 the
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meteoroild flux may result in either an accretion or an erosion
of the moon. On hard targets, the hypervelocity impact results
" in a "jet" of very high velocity ejecta, amounting to several
particle masses. The jet exceeds fthe escape velocity of the
moon, and a net loss of material results. On the other hand,
_an extremely porous surface layer will quench the jet and re-
sult in a net accumulation of material.

‘ However, as stated above, McCracken and Dubin esti-
"mate the total infall (of masses under 10 kg) at 1 gm/cc in
4.5 billion years; in our nominal case of 10940.7 years, the
expected influx 1is '1/5 gram, or 2mm. The question of either
accretion or erosion 1s then immaterial to the estimated 0.1
meter depth.

The ejecta from larger craters may contribute to the’
dust blanket, although it does not contribute the "covering"
erosion of a particular square meter of surface. This question
will be covered in detail in the next section of the paper.
Briefly, the contribution from the observable craters is
localized near the craters, so that one need worry mainly
about the craters between 1 and 103 meters in diameter for a
contribution to the dust blanket.

: For these, the "stone" population is effective
(equation 2.17). Since the blanket is not protective against
major impacts, we must use Equation (3.11) for the total

volume "worn away. ... and transported." Substituting, we obtain

V(1m, 103 m) - .134 m3/m® = ,134 m depth,  (3.22)

just about doubling our estimate. As will be shown in the
next sectlion, much of this volume should appear as isolated
blocks of debris, and the net correction of the uniform  dust
layer thickness 1s well under a factor of two.

: The above analysis assumes a modestly coherent dust
quite contrary to Dr. T. Gold's proposal of a very fluid
. layer(23 . Accounting for the erosion products from the
degradation of the continental craters, he inferred a flow
of fine dust into the maria, where it might accumulate to a
depth of 300 feet, "and probably a great deal more." Vari-
ous authorities, notably H. C. Urey(3l),have taken exception
to extreme statements of the hypothesis. As pointed out
by R. F. Fudali¥, the continents possess natural closed basins
of deposition which are not filled with marial material.
Urey questioned the survival of both color differences and
topographic features on the maria, were Gold correct.

#Private Communication
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We conclude therefore that a statistical model
of the lunar surface may well include a disturbed surface
layer of thickness between 2 and 60 centimeters, with
confidence about 80%, dependent on the intensity of the
primary infall. Even primordial features of size exceeding
this should survive.

As for the nature of the layer, the top surface
will have been turned over by micrometeoroid bombardment
many times in lunar history. The lower levels may be
expected to be compacted by this very process. re layer
of dust and debris will be deeper in the immediate neigh-
borhood of larger craters. This problem forms the subject
of the next section.

DISTRIBUTION OF FRAGMENT SIZES

In this chapter, we discuss the number density and
spatial distribution of fragments from the lunar craters.
A primary reference for this study is the paper by Gault,
Shoemaker, and Moore(28), Spray Ejected from the Lunar
Surface by Meteoroid Impact. We shall refer to this paper
below as GSM. Most of the empirical background for the
section, plus some very similar analysis, will be found
there. Since the emphasis here will be on surface topography,
the approach is somewhat different; and the analytic study
is less closely dependent on the empirical impact results
than that in GSM. :

Each major impact results in a crater of some vol-
ume. As described by Baldwin(5) a substantial portion of
this is accounted for by deformation of the substrate, the
surrounding terrain being squeezed and folded up to form
the rim. The remainder is projected into space with varying
velocities, as described by GSM. It is hard to estimate
the portion ejected; we shall generally use the entire
crater volume. Of the ejecta a few projectile masses (de=-
pending on the impact velocity) exceed 2.4 km/sec., and
leave the Moon. The remainder (some hundreds of projectile
masses) is redeposited , mostly within a few km of the cra-
ter. The question to be asked here is: compared with the
small (1 meter) cratex population, what has been the inci-
dence of fragments of thé same general size? If this can be
obtained, some of the fragments wlll survive as suchj; others
will have generated secondary craters. Since the velocity
of secondary impact is low, the contribution of terrain rough-
ness should be about the same in either case,




To attack the problem at all, we must have the
primary infall rates estimated in chapter II, and a
comminution (grinding) relation which relates the fragment
sizes to the size of the parent crater. The empirical
distributions presented by GSM are exponentials, given in

the form,
Me e i
i/ (;5> (4.1)

M is the total ejected mass from the crater; M
is the cumulative mass of fragments smaller than e in
diameter; and b is the diameter of the largest fragment,
typically about a tenth of the crater diameter, but less
than thils for very large craters. Empirically, o ranges
from 0.3 to 0.7. GSM use a value of 0.4, The crucial
element of the comminution scheme (4.1) is the approximate
scaling with crater diameter; there are, for instance,
about the same number of fragments of diameters D/100
for all crater diameters, D. Some very interesting re-
sults require no further assumption than this,

e

It is a rather strong assumption; but the re-
sults are still useful if the fragment distribution changes
only slowly over the range of crater diameters concerned.

The assumption can be expressed as follows. From
a primary crater of diameter D, a number of secondary
- fragments are thrown out, The cumulative number of secon=-
daries exceeding diameter e is Ns(e); the number between

diameters e and e + de 1s assumed a function only of e/D.
Thus,
dNS(e) = A ¢ g(e/D) * d(e/D) (4,2)

The coefficient A is a constant. The function g
can be arbitrary, within the condition that the total volume
of secondaries corresponds with that of the ejected crater
material, The volume contained in the dNS secondaries 1is

dv(e,D) = Ag e3g(e/D)d(e/D). (4.3)

For simplicity, we have assumed spherical fragments
of diameter e. The total volume in fragments smaller than
e is: e/D .
_ 2.3 3 4.4
V(e,D) = AgD y° gly) dy. (4.4)
o}
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The varlable y = (e/D) has been substituted.
We now put on the requirement that the secondary volume
equal the crater ejected volume, V. Let this be

1l
3
np 1.3 3
0

<
[}
i

Above, we defined 0 D3/12R as the volume of a primary
crater; I D3/12Re is the volume ejected. As stated above

we shall generally set Re = R, assuming that the entire

crater volume is ejected, From (4.5), we can set a value
for A. It is convenient if A = (1/2Re); then,

1

f y3eg(y)dy = 1. (4.6)
o]

Considering (4.4) again, V(e,D) must go to zero
with e; it 1s useful to set limits on the behavior of g(y)
which are consistent with (4.1). We write

a = 0,1 (4.7

By differentiation of (4.4), we see that a suffi-
cient condition for this is:

Lim ool 4
yro gly){ay (4. 8

We can now compute the secondary particle flux
in terms of the primary influx described in the last chap-
ters. Since our influx is already expresssd in crater
diameters, the result is quite different in form from that
obbtalned in GSM. The number of secondary particles sexceed-
ing diameter e resulting from dND(D) nrimary craters is:

1

P

3 } o= ;_1 N | >y { { g
N (e) = sad (D) J gly)dy (4.9

e/D

As in the preceding chapter Equation 3.3, we take
the differential distribution of craters as n(D).
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The total number of secondary particles exceeding
diameter e 1is: .

, } ® 1 .
Ns(e) = 5% -[ n(D)dD j’ g(y)dy : (4.10)
e e/D

Something should be said about the limits of the
D integral. When using some fixed empirical form for g,
it 1s necessary to start the D integration at the D value
greater than e which first produces e-size fragments., With
g arbitrary, we can imagine it identically zero for the
appropriate range of y, from about 0.1 to 1,

We now invert the order of integration in (4.,10)

1 ®
N (e) = -2—% Ig(y)dy J' n(D)daD, (4,11)
o 2/y : '
This is, by the definition of Np(D),
- 1
Ns(e) = 5%, J' g(y)pre/y)dy (4.12)

Now in chapter two the crater distribution was
represented by a sum of several exponential fluxes (Equa-
tion 3.2), each dominating in a particular diameter interval.
This could be written as a summation,

N (D) - L N,D™S1 | (4.13)
p i :
Each term will contribute secondaries; the result
is, 1
' B 51 |
N,(e) = =& L:Nie [g(y)y dy (4,14)
= 6

That 1s, each component of the primary flux contribe-
utés: a distribution of ejected fragments which save for a
constant has the same exponential size distribution as the
primaries,

For the stone meteorite infall (2.17) sj; = 3. But
the integral is normal for this value (equation 4,5)

N (e) = 53N (e) s =3 (4.15)
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This means that volume for volume, there are equal
numbers of primary craters and secondary fragments. That
is, a 1 meter spherical fragment has 2R times the ejected
volume of the 1 meter crater. The number density of
1 m fragments 1is therefore reduced 2R times.,

For steeper fluxes (for instance, the cometary flux,
(2.15)) the integral is less than one. We can show this in
a speclal case which doesn't greatly affect the arbitrari-
ness of the function g(y). Suppose that, in accord with the
GSM results, there is no fragment larger than qD in size,
where q is about a tenth., Then g(y) must be zero for y>q.
Since yS 1is an increasing function for y and s positive,
.the following inequality holds,

1 q
J g(y)y dy =fg(y)y3ys'3dy
0 [¢]
1
<qs-3j g(y)y3dy = qS-3 (4.16)
2 |
so, for s>3,
5=3
Ng(e) Aze N (e),s>3 (4.17)

In the same way, 1t can be shown that for_s<3, the
fragment population increases more rapidly than qs-3. ’

This leads us to the question of what happens to
the distribution when s reaches the values of 2.1 (for the
irons) or 1,50 (for the lunar craters).

The general arguments we have used heretofore are
less useful in this range. It becomes necessary to use de-
tailed models; this can be done much more efficiently by
the experts in the field. However, it should be noted that
the throwout from craters is localized. Gault, Shoemaker,
and Moore estimate that 50% of the ejected mass travels
less than a kllometer, and 90% less than thirty kilometers.
Thus, estimates of uniform debris density should not be
based on craters less dense than perhaps one every 106 m2,
This density occurs at about the change to smaller s values.
We can then properly speak of the uniform debris density as
being given by equation (4.15) and (4,17).
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The dominant infall in the 1 = 100 meter diameter
interval is that of the stone meteoroids, whose number
density is given by equation (2.17). We can then derive
the number density of ejecta fragments in the 1 meter size
range; we take R = 2,5 (4:1 craters), and obtain for the
cumulative number per square meter exceeding diameter e,

log F(e) = = 1.91 - 3log e + 1.3 (4.18)

For the larger craters the nature of the comminution
relation must be specified; this can be studled both from
the laboratory impact experiments (as in GSM) and by

studies of lunar topography, as in E. M, Shoemaker's article
on the Interpretation of Lunar Craters.z

In conclusion, under our assumption of a uniform
scaling law, we expect a reasonably uniform denslty of
secondary fragments (or satellitic craters) such that for
each primary crater there is a secondary element of equiva=
lent volume. Primary craters of number density exceeding
one per square kilometer contribute to this distribution;
larger and less frequent craters must be considered as sur=-
rounded by localized debris concentrations, which may, how-
ever, be substantial at distances of thirty kllometers from
the crater 1lip,

MODEL OF LUNAR SURFACE ROUGHNESS DERIVED FROM METEORIC INFALL:
N

In the above pages we have endeavoured to produce
a sequence of lunar surface models, on the hypothesis that
lunar topography has resulted solely from meteoric impacts.
It 1s pertinent to mention thac the earth's topography is
extraordinarily varied and has resulted from a large number
of processes among which meteoric infall must be considered
rather minor. It 1s only reasonable that lunar topography
as well should owe its origin to a number of processes, con=
structive and destructive, Meteoric infall is surely more ime
portant than on earth; it remains only part of the story.
It is, however, a part on which reasonably quantitative
roughness estimates can be made, and this is its value. We
now summarize the results obtained above and briefly examine
some of the simpler implications for lunar missions.

In chapter II, the meteoroid influx was studied.
It appeared that in the range of 0.1 to 10 meter crater sizes,
the dominant infall was that of the brilliant visual meteors,
or the stone meteorites. We expressed the inferred cumula=-
tive number density of craters exceeding diameter D in meters,
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as F, per square meter on the lunar maria,
log F = = 1.21 - 3 log D * 1.3 (2.17)

The uncertainty of twenty times reflected lack of
knowledge about the meteoroid flux, its constancy over the
debated age of the maria, and about the crater sigze
assoclated with a given impact. The craters were assumed
to have diameter to depth ratios of 4:1, In chapter IV,
we showed, assuming a uniform comminution law relating frag-
ment size to crater diameter, that to each primary crater
there would correspond one fragment of equivalent volume,
‘Related to the primary crater density above, the density of
(spherical) fragments of diameter e or greater would be

log F(e) = = 1,91 = 3 log e + 1.3 (4,18)

This estimate includes the entire contribution from
the infall of stone meteoroids. The contribution from the
flux of iron meteoroids dominates the number densities of
primary craters of diameters exceeding about 100 meters, The
substantial debrils concentration from these 1s not contained
in (4.18), in part because these craters are infrequent enough
that the rubble may be associated with a given crater, rather
than being uniformly distributed.

In chapter III, the degree to which features were
degraded by meteoritic erosion was considered, It was cone
cluded that the attack of bedrock by smaller particles would
soon be terminated by the accumulation of a protective debris
layer, The total accumulation of this layer due to the entire
"cometary influx" was estimated as

L = .1 meters (3.21)

with an uncertainty of six times,
The layer would not protect agalnst more massive impacts, but
we estimated tnhat throwout from these would not double
layer thickness, and was unimportant within estimated error.
The upper reglons of the layer are being continually "turned
over" by bombardment by the smallest meteoroids. The shock
transmitted down 'can be assumed to compact the lower levels
to a structurally satlsfactory degree., The total depth can-
not be considered an "incompetent dust", ,

Let us now summarize the models of lunar surface
roughness: It will be remembered that the "models" can be
best considered as upper bounds to the numbers tabulated,
with confidences of perhaps 90% (pessimistic), 50% (nominal)
and 10% (optimistic).




In table II we tabulate, for these models, the dust
layer depth, the cumulative density of one meter craters
(depth 0.25m) and the cumulative density of 1 meter dia-
meter spherical fragments. The latter offer much more
danger to spacecraft,

We now very briefly investigate the implications
of these models for lunar missions. Generally, these models
are quite rough.

The pessimistic case is quite rugged. The surface
is "covered" by 1 meter craters, and should--provided the
dust layer was absent--resemble the continental regions of
the moon as seen on photographs. One meter fragments are on
the mean spaced every 2 meters. The dust layer is of depth
70 centimeters; no doubt this will conceal many features. 4e
cannot quantitatively estimate sinkage, but, clearly, de-
pendent on underlying topography, sinkage approaching 20 or
30 centimeters is plausible, Withal, the model is not hope-
lessly inhospitable. Such a boulder - strewn landscape would
not be too difficult to walk on. The consistent ruggedness
might make it plausible for landing; the surface would have
to be essentially uniformly covered with crushed rock. There
would be no question of finding a "smooth area" other than
one where the dust might conceal unknown topography.

The optimistic case is quite another matter. Two
centimeters of "dust" cover the surface, and sinkage exceed-
ing one is unlikely. One 1 meter crater is expected every
300 m2; using the Poisson formula, one has about a 35% chance
of finding a 20 meter diameter circle free of craters larger
than 1 meter (and an 80% chance of finding one free of 1
meter ejecta).

That this is an "optimistic" case is rather a shock
if one has seriously considered requiring a landing site
roughly a square kilometer in area to be free of such obstacles.
Roughly 3000 craters and 600 fragments exceeding 1 meter in
size are "expected" in this area. Clearly, however, the model
offers little obstacle to a skillful astronaut landing a
vehicle which is docile and has good visibility.

In the nominal case, the 12 centimeter dust depth
(sinkage probably under 6) is allowable. The chances of
finding a 20 meter diameter circle free of craters are vanish-
ing; the chance is but 2% to find it free of rocks.

It then appears that the surfaces presented in these
models are not terribly encouraging. The burden of landing safety




TABLE II
MODELS
METEORIC INFALL AND LUNAR SURFACE ROUGHNESS

CRATER AND FRAGMENT COUNTS SCALE AS THE CUBE

OF FEATURE DIMENSION.

Density of features exceeding 1 meter (m-2). "Dust Layer"(m)

Craters _
(4.12 - Fragments Depth
Pessimistic 1.2 26 o 70
Nominal .06 013 .12

Optimistic .003 .0006 .02




may rest strongly on the evidence of a reconnaissance
mission, elther unmanned or manned, There are good rea=-
sons why one region of the moon might be preferable to
anothen,

There 1s still question, for instance as to the (6)
relative ages of the various maria. Though Shoemaker et al
estimated that the maria were closely the same age, Fielder(30)
has proposed that some may be very much younger than others.
Since both investigations compared crater counts, this should
be looked into. Darker and lighter areas in the maria have
been assocliated with varying age. Terrestrial nuclear explosion
craters are relatively smooth. It is conceivable that the in=
terlor of a recent postemarial crater might be a superior lande
ing site,

With regard to site location and verification, it
is most significant that we expect the crater population to
follow a cube law in the range of interest. Thus, we
would feel quite good confidence in extrapolating crater
counts obtained by an orbiting spacecraft; supposing that it
could define a distribution between diameters of 50m and
5m, we would expect (depending of course on the nature of the
data) something like a factor of 3 accuracy at 1 meter. If
this were to be spot-checked by a very few landed Surveyors,
extrapolation to 0.5 meter could be justified with useful
confidence over broad areas.

In closing, it is a matter of considerable regret
that we are unable to support the so-called, "Daytona Beach"
model of the lunar surface, These smooth, strong, desert=
like expanses beloved by science=fiction illustrators seem
excluded from consideration., Nature, of course, is under
no compulsion to be hospitable to man; quite to the con=
trary. we have ‘spent some billion years adapting ourselves
to her.

The extension of man's living space to the moon
only continues this adaptive process. If the models pre=
sented here can encourage a reasoned approach to this matter,
they will have served a useful purpose.
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LIST OF SYMBOLS

Each symbol is followed by the number of the equation in which
it first appears:

A (4.2) a constant
b (4,1) diameter of the largest fragment from a given impact

C(Dl,D ) (3.5) "coverage " fraction of area covered by
craters of diameters between Dl and D2

¢ (2.2) sound velocity
D (2.1) crater diameter

D,,D, specific values of D

d (2.2) particle diameter for a primary meteoroid

ST TP e (1.1) errors in quantities x, etec..

e (4.1) diameter of an ejected fragment
F(D) (2.1) cumulative number density of craters per unit area

Fg (D) (3.8) a cumulative number density of craters which 1is
"severely erosive. see definition at (3.8)

g(e/D) (4.2) a function describing the size distribution of
fragments from an impact

i (subsecript, (H.lS)."an integer)

K (3.6) a constant“

k (3.13) a constant réelated to layer strehgth |
L (3.13) layer depth

In: natural 1ogarithh

log: 1logarithm to base 10

M (4.1) total ejected mass

m (2.6) primary particle mass




M, (4.1) cumulative mass of fragments smaller than e, from
one crater

N(D) (2.6) cumulative flux, per square meter second of
.particles forming craters exceeding diameter D

Np (4.9) primary flux

No (3.1) a constant in a flux equation

Ni (4.13) one of a set of numerical values for No

Ns (e) (4.2) cumﬁiative flux of secondaries exceeding
diameter e

n(D) (3.3) differential flux of primaries

P (3.13) packing number. The ratio of base material
density to layer density

p (2.2) penetration in a semi-infinite solid

q (4.15) ratio of largest particle diameter to crater
diameter, b/D

R (2.5) volume ratio: hemispherical crater to real crater

R, (4.6) volume ratio: hemispherical crater to ejected volume

S crushing strength of a target (following (2.2))

s (3.2) population coefficient, exponent of diameter in
cumulative flux law against dliameter

Sy (4.,13) one of a set of numerical values for s

t (3.5) time

V(D D ) (3.10) volume eroded /m by total infall in the
diameter range (D 2,

V(e,D) (4.4) total volume of ejecta of diameters less than
e from a crater of dlameter D

‘ Ve (4.6) toﬁal volume of ejecta from crater of diameter D




' :

v (2.2) primary particle velocity

X,¥,2 dummy variables

o (4.1) an exponent in an empirical scaling law
r(x) (3.17) the gamma function

Py (2.2) density of primary particle

Pe (2.2) density of target




